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Abstract
We develop an iterative input–output feedback method for the phasing of surface
x-ray diffraction (SXRD) amplitudes that relies on successive operations in real
and reciprocal space. We demonstrate its use for the recovery of the real and
positive electron density of a surface unit cell from simulated SXRD intensities.
We have successfully recovered the entire surface electron density in a case
where the two-dimensional surface unit cell is the same as that of the bulk
and also in one where the surface unit cell is four times larger than that of
the bulk. We show that the exponential modelling algorithm for structure
completion derived earlier from maximum entropy theory may be regarded as
a special case of an input–output phasing algorithm with a particular form of
object-domain operations.

1. Introduction

Information about many important physical quantities in fields ranging from astronomy and
optics to crystallography and electron microscopy may be measured most conveniently only
indirectly through the amplitudes of their Fourier transforms. If the phases of these Fourier
transforms are also known, the recovery of the sought physical quantity of interest would
be the simple matter of performing an inverse Fourier transform. Unfortunately, in many
of these fields, it is frequently the case that such phases are not easily measurable, if at all.
Consequently, a question that has been much studied is whether those phases may be recovered
from the measured amplitude distribution, together with any other information that may be
available. This difficult question, of wide-ranging application, is what is known as the phase
problem.

In x-ray crystallography where the quantity of interest is the electron density of a unit
cell, a priori information about the positivity of this quantity and its concentration in the
vicinity of atoms (the property of atomicity) has allowed statistical considerations to allow
the formulation of a set of techniques, known as direct methods [1, 2] for the solution of this
phase problem.
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In electron microscopy, where the amplitudes may be measurable in both Fourier-related
domains (real and reciprocal space), Gerchberg and Saxton [3] have proposed an iterative
numerical algorithm that progressively improves the estimates of the phases in both domains.
In a subsequent paper Gerchberg [4] pointed out that, in the case of an object of finite and
known width, such an algorithm may even reconstruct details of that object of higher resolution
(super-resolution) than the bandwidth of the measured Fourier amplitudes may lead one to
expect. For the case of objects representable by a real and positive function of possibly known
limited extent, Fienup [5] has proposed a modification of the Gerchberg–Saxton algorithm,
which he has reformulated as an input–output feedback loop. This algorithm has proved to be
very successful in optics and astronomy.

We will show in the present paper that an input–output algorithm that successively
constrains the current estimate of the solution in real and reciprocal space may be used to solve
the phase problem in surface x-ray diffraction (SXRD). In this case, the function to be recovered
is the (positive definite) electron density in the surface atomic layers of a crystal. We will
also show that the algorithm we had previously derived from maximum entropy theory [6–8]
for the problem of structure completion in protein [9, 10] and surface [11] crystallography
may be regarded as a special case of such an input–output phasing algorithm.

2. Surface crystallography as a structure completion problem

The problem of structure completion has received much attention in protein crystallography
where, for instance, a partial model of the protein molecule may have been constructed during
model building and refinement or molecular replacement may have been carried out with a
‘probe’ similar to only a fragment of the target molecule. In the latter case, suppose that a
molecule or molecular fragment of known structure may be identified similar to the unknown
one to be determined. The first step in using this information to solve the unknown structure
is to perform a rotation and translation search to orient the known ‘probe’ to match that of its
counterparts in the structure to be determined. The next step, the recovery of the missing part
of the unknown structure, is what is known as the structure completion problem.

The usual aim of surface crystallography is to recover the structure of an unknown surface
of a known bulk structure, where both the surface and the bulk contribute to a measured set
of diffracted intensities. Thus, the problem of recovering the surface electron density from
SXRD may be regarded as one of structure completion. Suppose that the scattered amplitude
from a unit cell of the bulk crystal is due to an x-ray photon momentum transfer vector q.
Then the intensity of the detected x-rays may be written as

Iq = |Fq|2 (1)

where Fq is the structure factor of a unit cell of the repeating unit of the scatterers.
In x-ray diffraction, the scattering vector q is equal to the difference between the wave

vectors of the incident and scattered x-rays. In SXRD this may be taken as

q = Ha∗ +Kb∗ + Lc∗ (2)

where H, K and L are Miller indices, a∗ and b∗ are reciprocal lattice vectors parallel to the
surface and c∗ is perpendicular to the surface. The periodicity of a crystal surface restricts
H and K to integer values. The breaking of the periodicity perpendicular to the surface due to
the crystal truncation allows a continuous variation of L [11].

In general, the structure factor Fq may be written as the sum of two contributions,Rq due
to scattering from the bulk and Oq from the surface layers. Thus,

Fq = Rq +Oq. (3)
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The surface contribution, Oq, may be written as the Fourier transform of the electron
distribution {uj }, i.e.,

Oq =
∑
j

uj exp(iq · rj ) (4)

where {uj } is defined on a uniformly distributed grid of voxels at positions rj within the surface
unit cell. The structure of the surface can usually be deduced if it is possible to recover the
distribution, {uj }, of surface electrons.

It is important to realize that in surface crystallography the two-dimensional (2D) unit
cell of the surface atomic layers may be different (usually larger) than that of the bulk
layers. Defining the reciprocal lattice vectors a∗ and b∗ with respect to the surface unit cell
therefore, some of the reciprocal lattice rods (the so-called superstructure rods) corresponding
to particular integer values of H and K exist solely due to scattering from the surface layers.
Consequently, for those rods, Rq = 0, and the structure factor Fq has only contributions Oq

from the surface. Other reciprocal lattice rods corresponding to 2D reciprocal lattice vectors
of the bulk, and known as crystal truncation rods (CTRs), have contributions from both the
bulk and the surface regions according to equation (3).

3. Direct solution for the unknown electron density

Szöke [12, 13] and co-workers [14, 15] have developed methods of recovering the unknown
electron distribution in the structure completion problem of protein crystallography. They have
drawn attention to the analogy of the structure completion problem with that of holography
[16, 17], where the amplitude and phase of an unknown object wave are recovered from
a diffraction pattern termed a hologram formed by its interference with a known reference
wave. In the context of surface crystallography, the set of intensities {Iq} would constitute the
hologram, the amplitudes, {Rq}, from the known bulk the reference wave and those {Oq} from
the unknown surface the object wave.

Substituting (4) and (3) into (1), one may write

Iq − |Rq|2 =
∑
j

uj {R∗
qMq,j + c.c.} +

∑
j,l

ujulM
∗
q,jMq,l ∀q ∈ M (5)

where M represents the set of scattering vectors q corresponding to the measured data Iq, c.c.
represents the complex conjugate of the term preceding it and

Mq,j = exp(iq · rj ). (6)

Equations (5) constitute a set of simultaneous quadratic equations in the unknown electron
distribution {uj }. Szöke [12, 13] initially proposed that they be solved by neglecting the
quadratic terms and hence treating them as a set of linear equations, for which there exist a
host of well-established numerical methods. The Fourier transform of the resulting distribution
{uj } is then added to the reference amplitudes (Rq in our case) and the process repeated until
essentially all the structure becomes known. An alternative method of solving the quadratic
equations (5) based on repeated applications of a linear programming algorithm was proposed
by Saldin et al [18]. Szöke et al [19] have subsequently proposed other methods of solving
the quadratic equations directly.

Such methods have not been applied to SXRD, where as we have noted above, there is
the added complication that for some of the data (those constituting the superstructure rods),
the intensities Iq may have no contributions from a bulk reference wave. In the following,
we describe an alternative class of techniques that solve the structure completion problem
by estimating and iteratively improving those estimates of the phases associated with all the
measured intensities Iq.
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Figure 1. The effect of swapping phases and amplitudes of the Fourier transforms (FT) of two real
objects. The inverse Fourier transform much more closely resembles the image from which the
phases were derived.

4. The importance of the phases in an inverse problem

We begin with a simple but graphic example that illustrates the importance of the phases in
any experiment where a real object is sought from the amplitudes of its Fourier transform.

The top two panels of figure 1 show monochrome photographs of two graduate students
of the lead author. They are Mark Pauli and Ross Harder (the latter being the second author of
this paper). A fast Fourier transform (FFT) of the rectangular array of numbers representing
the digitized versions of these photographs may be performed to yield rectangular arrays of
complex numbers of the same dimensions.

The results of taking the inverse Fourier transforms of these complex arrays with
amplitudes and phases interchanged is shown in the lower two panels. It is quite striking
that the most recognizable features of the two images returned are those of the original image
from which the phases of the scrambled Fourier transform are derived.

The clear message for those trying to recover real objects from their Fourier transforms
is that although the amplitudes of those transforms may be most easily accessible from
the experiment, the unmeasured phases seem to be the most important determinants of the
recovered object. A similar demonstration by Read [20] reached the same conclusion. In
section 5 we review the earliest attempts to solve the phase problem for crystallographic
structure completion.
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5. The phase problem and difference Fourier syntheses

If we consider first only the case of a surface where the 2D surface periodicity was the same
as that of the bulk, all the data would consist of CTRs, and in principle the unknown electron
distribution may be found from the inverse Fourier transform:

uj = 1

N

∑
q

{Fq − Rq} exp(−iq · rj ) (7)

(where N is the number of voxels per unit cell) provided both the amplitudes and the phases of
the structure factors {Fq} were known. The difficulty, of course, is that although the amplitudes
of {Fq} are directly measurable from the experimental data, their phases are not.

The earliest approximate method for the structure completion problem by an estimation
of these unknown phases is the unweighted difference Fourier (UDF) method [21], which
approximates the phases of the structure factors by those of the known part of the structure,
i.e. it estimates the electron distribution of the unknown part (in our case the surface) by

u
(UDF)
j = 1

N

∑
q

[|Fq| exp
{
iφ(R)q

} − Rq
]

exp(−iq · rj ) (8)

where

φ(R)q = arg[Rq] (9)

the phase of Rq, which is known since it is derived from a calculation of Rq from the known
part of the structure (the bulk).

In the analogous structure completion problem in protein crystallography, the following
refinement of the UDF formula above has been proposed by Read [22]:

u
(σA)
j = 1

N

∑
q

{mg

∣∣Fq

∣∣ exp
(
iφ(R)q

) −DqRq} exp(−iq · ri) (10)

where mq is a figure of merit which represents the average effect of possible deviations of
the phase of Fg from φ

(R)
q , and Dq takes account of all possible sources of uncertainty in

the coordinates of the partial structure. This supersedes the earlier Sim weighted difference
Fourier formula [23, 24], which is a special case of (10) when the known part of the structure
(in our case the bulk) is assumed perfectly known.

Of course, such difference Fourier methods are not able to deal with the data of
superstructure rods, since the latter have no contribution from the known bulk. Conversely, an
alternative direct method proposed recently for SXRD [25] exploits data in only superstructure
rods, and not CTRs. The iterative methods for structure completion that we now describe
operate on data from both CTRs and superstructure rods [11, 26]. Consequently, they are
capable of analysing diffraction intensities from not just reconstructed surfaces with 2D unit
cells larger than their bulk counterparts (and which hence give rise to superstructure diffraction
rods) but even of surfaces, like that of O/Cu(104) described in section 8.1, whose surface unit
cell is identical in size to that of the bulk, and which do not generate superstructure rods. Even
for surfaces of the latter category, the results of our algorithms turn out to be far superior to
those of either of the difference Fourier prescriptions above.

6. Structure completion by an input–output phasing algorithm

The idea of an input–output feedback loop for phasing that iteratively satisfies conditions in
real and reciprocal space has been suggested by Fienup [5] for problems where a positive
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Figure 2. Flow chart of the input–output feedback loop that converts an input real-space distribution{
u
(n)
j

}
to an output distribution

{
t
(n)
j

}
by constraining the Fourier transformed quantities to

experimental amplitude data. The new input real-space distribution
{
u
(n+1)
j

}
for the next iteration

of the feedback loop is calculated from the input and output at the previous iteration by a set
of object domain operations of the form u

(n+1)
j = f

(
u
(n)
j , t

(n)
j

)
, where f is one of the functions

discussed in the text.

definite distribution is sought, and where only the amplitudes of the Fourier transforms of that
quantity are accessible by experiment. The aim is to obtain increasingly better estimates of
the phases of these Fourier transforms by iteratively satisfying the reciprocal-space constraints
and the real-space requirement of the positivity of the sought distribution. Improvement of
phase quality is directly correlated with an improved estimate of this distribution. We propose
below a modification of such an algorithm for the structure completion problem.

A flow chart for an application of this algorithm to the structure completion problem in
surface crystallography is given in figure 2. Starting at the top left-hand corner of the flow
chart, suppose

{
u
(n)
j

}
represents the estimate of the unknown surface electron density at the

nth iteration. Proceeding to the top entry of the right-hand box, we take the Fourier transform
(FTq),

O(n)q =
∑
j

u
(n)
j exp(iq · rj ) (11)

of this distribution by a fast Fourier transform (FFT) algorithm.
The dimensions of the parallelepiped reciprocal-space array of

{
O
(n)
q

}(
and consequently

the real-space grid spacing of
{
u
(n)
j

})
are chosen so that all the values of the wave vector

difference q belonging to the set M of measured structure factors |Fg| may be embedded
within it. The set of elements in the same reciprocal-space array not belonging to M may
be termed the super-resolution set S since most of them are usually chosen to correspond to
larger values of |q| than those of the M set.

The next step is the evaluation of the arguments of the Fourier coefficients Rq +O(n)q for
all q ∈ M and the assignment of their arguments to the phases

φ(n)q = arg
[
Rq +O(n)q

] ∀q ∈ M. (12)

The ‘target’ Fourier coefficients T (n)q are then computed by the formula

T (n)q = |Fq| exp
[
φ(n)q

] − Rq ∀q ∈ M. (13)

The inverse Fourier transform

t
(n)

j = 1

N

∑
q

[
T
(n)

q∈M +O(n)q∈S
]

exp(−iq · rj ) ∀j (14)

at the last step within the right-hand box gives rise to the output electron distribution,
{
t
(n)
j

}
.
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Thus, in such an input–output scheme [5], the box on the right of the flow chart transforms
an input electron distribution

{
u
(n)
j

}
to an output one

{
t
(n)
j

}
at iteration n by combining

experimental information about the measured amplitudes |Fq| with the estimates of the phases,
φ
(n)
q , calculated from the current input electron distribution. The boxes on the left of the flow

chart describe the steps in the transformation of the input,
{
u
(n)

j

}
, and output,

{
t
(n)

j

}
, at the

nth iteration to the input
{
u
(n+1)
j

}
at the next iteration. These steps are known as the object-

domain operations, and may be written in the general form u(n+1)
j = f

(
u
(n)
j , t

(n)
j

)
. Fienup [27]

suggested four specific prescriptions: the so-called error-reduction algorithm,

u
(n+1)
j =

{
t
(n)
j if t

(n)
j > 0

0 otherwise
(15)

the basic input–output algorithm,

u
(n+1)
j =

{
u
(n)

j if t
(n)

j > 0

u
(n)
j − βt(n)j otherwise

(16)

the output–output algorithm,

u
(n+1)
j =

{
t
(n)
j if t

(n)
j > 0

t
(n)
j − βt(n)j otherwise

(17)

and the hybrid input–output algorithm,

u
(n+1)
j =

{
t
(n)
j if t

(n)
j > 0

u
(n)
j − βt(n)j otherwise

(18)

where the feedback parameter β may take a value between 0 and 1.
A convenient starting electron distribution

{
u
(0)
j

}
is a uniform one normalized to the total

number of electrons believed to be present in the unknown part of the structure. Its Fourier
transform will give O(0)q = 0, ∀q 
= 0. Also, since R0 andO(0)0 are both real, it follows from
(12) that

arg
[
T (0)q

] = arg[Rq] ∀q ∈ M (19)

and hence from (13) that∣∣T (0)q

∣∣ = |Fq| − |Rq|. (20)

The progress of successive estimates of the relevant Fourier coefficients of a particular
reciprocal space scattering vector q ∈ M may be visualized from figure 3. The distance
from the centre of the circle to its perimeter represents the magnitude |Fq| of the measured
structure factor of the entire sample (bulk plus surface). Rq is a fixed vector in this amplitude–
phase diagram, representing the bulk structure factor that is known in both amplitude and
phase. The surface contribution to the total structure factor must join the end of the vector Rq

to the circle perimeter. The problem is that since the phase of this vector is initially unknown,
there is an infinite number of such possible vectors. The first (unweighted difference Fourier)
estimate, T (0)q , of this surface structure factor takes this phase to be equal to thatRq of the bulk
in accordance with (19), and thus T (0)q is taken to be parallel to Rq, as shown in figure 3.

The inverse Fourier transform of the target structure factors
{
T
(0)

q
}

produces the initial

output real-space distribution
{
t
(0)
j

}
. After an application of the object-domain operations to

produce the new input distribution
{
u
(n)

j

}
(n > 0), the Fourier transform of the latter gives

the surface structure factor estimates
{
O
(n)
q

}
. The phase φ(n)q is defined by the vector sum of
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Rq

T q
(0)

T q
(n)

O q
(n)

|Fq|
φ q

(n)

Figure 3. Amplitude–phase diagram indicating the relationships amongst the various component
structure factors of scattering vector q. The circle has a radius of |Fq |, the measured amplitude of
Bragg reflection q. Rq represents the structure factor of the known bulk unit cell. This is known
in both amplitude (length) and phase (angular separation from the dashed line). The (unweighted)
difference Fourier estimate of the structure factor of the unknown part of the structure (the surface)
is represented by the vector T (0)q , which has the same phase (direction) as Rq . O(n)q is the estimate
of the same structure factor at the nth iteration (n > 0) of the input–output feedback loop, formed
from the input distribution

{
u
(n)
j

}
of the surface electron density. Since the end of the vector sum

of Rq and O(n)q will not in general lie on the circumference of the circle, the length of this vector

is adjusted to the circle radius. The target structure factor T (n)q of the surface is then constructed

such that when added vectorially to Rq it is equal in both amplitude |Fq | and phase
(
φ
(n)
q

)
to the

new estimate F(n)q of the structure factor of the entire structure (bulk and surface). The Fourier

transform of the target structure factors
{
T
(n)
q

}
forms the output distribution

{
t
(n)
j

}
at the nth

iteration. The object domain operations then construct a new input distribution
{
u
(n+1)
j

}
and the

process is repeated until O(n+1)
q and T (n+1)

q

(
or

{
u
(n+1)
j

}
and

{
u
(n)
j

})
converge.

Rq andO(n)q as shown in the figure. Since, in general, the magnitude of this vector sum will
not be equal to |Fq|, this vector is extended (or contracted) without change in direction until
it touches the circle perimeter. The vector joining the end of the bulk structure factor Rq and
that point on the circle’s perimeter is now defined as the new estimate T (n)q .

After several iterations, as convergence is approached, O(n)q andT (n)q ,∀q ∈ M, tend
to merge. The resulting common phase φ(n)q is the final estimate of the phase of the
measured structure factorFq. When supplemented by the super-resolution Fourier coefficients
O
(n)
q ,∀q ∈ S, the inverse Fourier transform of the combined set gives the final estimate of the

surface electron distribution as that to which both
{
t
(n)
j

}
and

{
u
(n)
j

}
eventually converge.

Later we will describe applications of the error reduction version of such an input–output
algorithm to problems in SXRD. For the present we point out that the exponential modelling
algorithm that we previously applied to the same problems may be regarded as a special case
of an algorithm of the same type.
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7. Structure completion by exponential modelling

The problem of obtaining stable and meaningful solutions from incomplete and noisy data
has been addressed in a variety of fields by means of the principles of Bayesian statistics [28],
and the maximum entropy method in particular [6, 29]. In x-ray crystallography, this idea has
been used to develop an exponential modelling algorithm [7, 8] for improving the resolution
of a pre-existing electron density map of a protein. A similar exponential modelling scheme is
used by Bricogne [30–32] and Gilmore [33] as part of an iterative process of phase extension
in which a knowledge of the phases of some low-resolution structure factors is extended to
those of higher resolution shells as implemented by the BUSTER computer program [34].

We have shown earlier that the exponential modelling algorithm that Collins [7] originally
proposed for super-resolution in protein crystallography may be adapted to the structure
completion problem of protein [10] and surface [11] x-ray diffraction. The starting point of
the theory is the fact that in Boltzmann’s expression for the entropy, S, of a distribution

{
ul

}
,

namely

S[{ul}] = k ln [{ul}] (21)

where k is Boltzmann’s constant, the number of microstates per macrostate, , is proportional
to the probability (P) of the distribution. Consequently,

P [{ul}] ∝ expS[{ul}]. (22)

Thus the most probable distribution {ul} corresponds to that which maximizes S. A convenient
form for the entropy, which is equivalent to Boltzmann’s expression above, is Gibbs’ form
[35]:

S[{ul}] = −
∑
l

ul ln(ul/(eml)) (23)

where e is the base of the natural logarithms and {ml} is the best prior guess of the optimum
distribution {ul} (which we could term the measure of the distribution). By differentiating S
with respect to uj (where j is a particular one of the set of indices {l}) it is easy to show that
the distribution {ul} that maximizes S is the trivial one that is identical to {ml}.

The maximum entropy method seeks to find the most probable electron distribution {ul}
consistent with the experimental data. This may be done conveniently by constraining that
distribution by the method of Lagrange multipliers. In the case of the structure completion
problem, {ul} may be identified with a best guess of the distribution

{
u
(n)
l

}
of the unknown part

of a unit cell at step n of an iterative algorithm. The measure {ml} may likewise be identified
with the estimate

{
u
(n−1)
l

}
of the electron distribution at the previous iteration. The next step

is to maximize the functional

Q
[{
u
(n)
l

}]
= −

∑
l

u
(n)
l ln

[
u
(n)

l

eu
(n−1)
l

]
− λ′

2

∑
q

∣∣∣O(n)q − T (n−1)
q

∣∣∣2

σ 2
q

(24)

where the first term on the right-hand side (RHS) is Gibbs’ expression for the entropy of the
distribution

{
u
(n)

l

}
with respect to the one

{
u
(n−1)
l

}
from the previous iteration. The second

term on the RHS constrains the structure factors O(n)q (11) from the unknown part of the
structure to be consistent with the experimental data, represented by a set of target structure
factors T (n−1)

q defined by (12) and (13) with n substituted by n − 1. The quantity σq in (24) is
the estimated uncertainty in the measured structure factor amplitude |Fq|, andλ′ is a Lagrange
multiplier.
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Q may be maximized by requiring that

∂Q

∂u
(n)

j

= 0 ∀j. (25)

If the individual variances σ 2
q are replaced by their mean value, equations (25) lead to the

‘single voxel’ recursion relations

u
(n)
j = u

(n−1)
j exp

[
−λ

{
u
(n−1)
j − t (n−1)

j

}]
∀j (26)

where the target function t (n−1)
j is given by (14) with n substituted by n − 1, and

λ 1
/
u(n−1)

max (27)

where u(n−1)
max is the maximum value of the distribution

{
u
(n−1)
j

}
. The derivation of equations

(26) and (27) has been given in our earlier papers [10, 11] and will not be repeated here.
The algorithm is initiated by defining the initial estimate

{
t
(0)
j

}
of the ‘target function’ as

that given by the UDF formula (8). As for the initial estimate
{
u
(0)
j

}
of the sought surface

electron distribution, we may take this to be [7]

u
(0)
j =

{
t
(0)
j if t

(0)
j > t(0)max

/
100

t (0)max

/
100 otherwise.

(28)

For some problems, it may be possible to start by taking
{
u
(0)
j

}
to be a uniform distribution, as

in the input–output scheme of section 6. In any case, the distributions
{
u
(0)
j

}
and

{
t
(0)
j

}
need

to be different, otherwise the argument of the exponential in (26) will be zero, and the sought
distribution {uj } will not be updated. The particular construction (28) ensures that

{
u
(0)
j

}
is

almost the closest possible one to
{
t
(0)
j

}
that satisfies the condition of non-negativity. The

distributions
{
u
(n)

j

}
are updated at each iteration only from (26) and from a re-normalization

to the expected total number of electrons. The exponential in (26) ensures that the recursion
relation can never produce negative values at any voxel at any subsequent iteration. This
process of exponential modelling [8, 36] automatically satisfies the physical constraint of
positivity of the electron distribution.

Despite their radically different derivations, we point out that the implementation of the
exponential modelling algorithm is essentially that of an input–output feedback scheme, and
is described by a similar flow chart to figure 2. The only significant difference is that the
particular form of the object-domain relation u(n+1)

j = f
(
u
(n)
j , t

(n)
j

)
is that of equation (26)

with n replaced by n + 1.
We have described applications of this exponential modelling algorithm to finding the

surface electron density of a couple of test cases in an earlier paper [11]. Here we show that
application of the conceptually simpler error-reduction object-domain operations (15) enables
similar solutions to the same cases examined previously.

8. Applications of the error-reduction algorithm for the recovery of surface
electron densities

We now describe two applications to surface x-ray diffraction (SXRD) of the error-reduction
version of the input–output algorithm described in section 6 (hereafter known as the error-
reduction algorithm for short). For the sake of comparison, we chose for our tests the same
structures considered for our earlier examples [11] of applications of the exponential modelling
algorithm above.
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40

Figure 4. Cut through reciprocal space parallel to the surface intersecting
the crystal truncation rods (CTRs) from a Cu(104) surface. There is a
mirror plane of symmetry perpendicular to the paper and passing through
the H-axis. The diagram indicates all CTRs employed in the calculations.

8.1. Surface of the same 2D unit cell as the bulk: O/Cu(104)-(1 × 1)

Our first example of an application of the error-reduction algorithm for the recovery of a
surface electron density is a case where the 2D unit cell of the surface is the same as that of
the bulk. In such a case all the rods of scattered intensity in reciprocal space are CTRs, which
have contributions from both bulk and surface. Thus the algorithm of section 6 may be used
without modification.

The structure of the O/Cu(104) surface has previously been studied by x-ray photoelectron
diffraction [37] and by conventional surface x-ray diffraction methods [38]. Therefore, it offers
a good test case for our algorithms. Our test ‘experimental’ data consisted of the amplitudes of
crystal truncation rods expected of the structure, as calculated by an adaptation of Vlieg’s [39]
SXRD program. The test data consist of a set of structure factor amplitudes corresponding
to scattering vectors q with integer values of the Miller index pairs (H, K) and essentially
continuous values of the third Miller index L. The centred (2 × 2) surface unit cell restricts
the combination of H and K Miller indices to those of even values of (H + K) (see figure 4).
Furthermore, due to mirror planes perpendicular to the surface and parallel to the H axis, it is
necessary only to be given values of intensities of the rods with positive values of K.

For the purposes of our test we simulated the intensities of just those 26 of these
inequivalent CTRs represented in figure 4 for positive values of the Miller index L varying
from 0 to 5.64 in intervals of 0.471, based on the model proposed by Walko and Robinson [38].
The combination of mirror symmetry and Friedel’s law allowed us to deduce the intensities
of all other CTRs of figure 4 for both positive and negative values of L. The additional data
required for our algorithm are of course calculated values of the amplitudes and phases of
the corresponding structure factors of the assumed unreconstructed bulk structure of Cu(104).
These were also calculated by the same computer program at the same values of H, K and L.
In terms of our theory explained in the previous section, these formed the M set of known
structure factors. These known structure factors were embedded in an array that ranged from

1 This represents an oversampling of data along L by a factor of more than 6 to recover the electron density of an
assumed surface slab of thickness 5 Å.
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Figure 5. (a) Perspective view of isosurfaces of electron density representing the starting electron
distribution

{
u
(0)
j

}
(the difference Fourier estimate) of the O/Cu(104) surface unit cell. Note that

the translucent green isosurfaces envelop the red dots representing the model positions of the Cu
atoms in the surface layers. However, no significant electron density is found in the vicinity of the
O adsorbate atom positions (represented by the blue dots). (b) Electron density isosurfaces in the
same unit cell after convergence of the error-reduction algorithm described in the text. The green
lobes are now better centred around the Cu substrate atom positions, and also now envelop the blue
dots representing the O adsorbate atom positions, thus revealing their locations of the latter atoms
in the surface unit cell.

H = −16 to 16,K = −16 to 16 andL = −7.05 to 7.05. The elements of the reciprocal-space
arrays not initially assigned to known structure factors formed the super-resolution set S.

Figure 5(a) shows a perspective view of a surface of constant electron density (an
isosurface) of the initial (unweighted difference Fourier) estimate

{
u
(0)
j

}
of the sought

distribution. The red dots represent the assumed positions of the surface Cu atoms, while
the blue dots indicate the positions of the adsorbate O atoms. Figure 5(b) shows the surface
electron distribution after 600 circuits of the flow chart of figure 2. Not only does the electron
density around the O atom positions now show up, but also that around the Cu substrate atoms
appears more accurately centred around their true atom positions.

The fact that this image improvement is correlated with progressively better estimates
of the phases of the measured data is clear from figure 6. Plotted here is the variation with
iteration number of the average phase difference

&φ = 1

M

∑
q∈M

∣∣φ(c)q − φ(true)
q

∣∣ (29)
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- CTRs: (RHKL + OHKL) from bulk and surface

- Superstructure rods: (OHKL) from surface

(02)

(20)(00) (10)

(01) (11)

Figure 6. Variation as a function of iteration number
of the error-reduction algorithm of the average phase
difference &φ between the current estimates and true
phases from the model structure of O/Cu(104).

Figure 7. Cut through reciprocal space parallel to the
surface intersecting the crystal truncation rods (CTRs)
specified by even values of both H and K Miller indices,
and superstructure rods specified by odd values of either
H or K.

between the current estimates φ(c)q and the exact phases φ(true)
q from our model of the true

structure, where M is the number of terms in the sum.

8.2. Reconstructed surface: GaAs(111)-(2 × 2)

A potentially tougher test is the recovery of the electron density of the outermost two double
layers of the GaAs(111)-(2 × 2) surface. A conventional LEED analysis [40] has established
that this surface reconstructs into the so-called vacancy buckling structure, in which there is
not only a large relaxation and reconstruction of the outermost bilayer, but there is also a
vacancy formed in this layer at the corners of a (2 × 2) surface unit cell. Figure 7 shows a cut
through reciprocal space parallel to the surface, which now intersects both the CTRs indexed
by even values of the H and K ‘in-plane’ Miller indices of the substrate 2D reciprocal lattice,
and also the reciprocal-space diffraction rods characterized by odd values of either index. The
latter, superstructure rods, which arise purely due to scattering by the (2 × 2) surface unit
cell, have no reference wave contribution from the known bulk structure. In contrast, the
CTRs have contributions from both surface and bulk scattering, as in the case of our previous
example.

Thus only the CTRs may be initially phased with reference to the bulk phases. Our
strategy for dealing with this case is to begin by allowing the error-reduction algorithm to
operate on just the CTR data. The resulting surface electron density distribution will have a
(1 × 1) periodicity which is the average of the density of each of the (1 × 1) quadrants of the
true (2 × 2) periodicity. Figure 7 indicates only the reciprocal space rods in the first Brillouin
zone of the 2D reciprocal lattice of the bulk 2D unit cell, but simulated data were used to fill a
parallelepiped in reciprocal space corresponding to integer values of the Miller indices H and K
ranging from −8 to 8 and Miller index L ranging from −9.585 to 9.585. Of course, the data
need to be calculated (or in a real experiment, measured) only in a symmetry-reduced sector,
and only for positive values of L. The rest of the data in this parallelepiped may be generated
by an application of symmetry operations and Friedel’s law.
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The starting electron distribution,
{
u
(0)
j

}
(the difference Fourier estimate), of the outermost

two double layers of a (2 × 2) surface unit cell calculated from the initial assignment of the
phases of the bulk to {Fq} is shown in figure 8(a). The red dots in the figure mark the positions
of the Ga surface atoms in the model, while the light green dots indicate those of the As surface
atoms. One feature of the vacancy buckling model is that although the spacing of the lower
double layer remains at approximately its bulk value, the uppermost double layer relaxes so
as to make the two components of that double layer almost coplanar. The electron density
isosurfaces in figure 8(a) obviously have a (1 × 1) 2D periodicity. The isosurfaces also appear
to be consistent with an extension of the bulk structure in each of the outermost two double
layers, where the relaxation of the outermost double layer is not apparent.

The electron density distribution,
{
u
(n)

j

}
, after 800 iterations of the error-reduction

algorithm, where the data of only the CTRs are used, is shown in figure 8(b). This correctly
contains almost coplanar isosurfaces associated with the Ga and As atoms in the outermost
double layer, although the (1 × 1) periodicity of the average structure remains.

The recovery of the true (2 × 2) periodicity of the surface requires the inclusion also of data
from the superstructure (or odd-order) rods. At this point we included target amplitudes (13)
of the superstructure rods (with Rq = 0) in the Fourier summation for the target function (14).
Since the bulk cannot define the initial phases of these amplitudes, we arbitrarily set initial
values of these phases to be random for most of the data, and zero for the so-called centric
structure factors, which are real by symmetry. The resulting surface electron distribution
after 1000 further iterations of the error-reduction algorithm is shown in figure 8(c). These
isosurfaces are now seen to accurately pinpoint the locations of all atoms in the vacancy
buckling model. It correctly reproduces the (2 × 2) 2D periodicity and even shows up the
vacancy at the corners of the (2 × 2) unit cell.

In this case also insight into the progress of the algorithm may be monitored by evaluating
the average phase difference &φCTR (29) of just the CTRs, as shown in figure 9(a). A more
or less steady decline is observed until about 600 iterations, after which a plateau is reached.
After 800 iterations, the data from the superstructure rods are included. The value of&φS for
just the superstructure data included in the sum in (29) is observed to reduce from about 120◦

to about 85◦ over the course of the next 1000 iterations of the error-reduction algorithm, as
shown by curve (b). Meanwhile the value of &φCTR reduces further from its initial plateau
around 55◦ until a final plateau around 42◦.

Progress of the algorithm for even an unknown structure could be monitored by evaluating
the x-ray R-factor,

R
(n)
X =

∑
q

∣∣∣∣∣∣∣Rq +O(n)q

∣∣∣2
− |Fq|2

∣∣∣∣∑
q |Fq|2 (30)

as a function of the iteration number n. The results for the GaAs structure here are shown in
figure 10. Curve (a) shows that there is a fairly steady reduction of this quantity during the
first 800 iterations when the error-reduction algorithm acted only on the CTR data. When the
data from the superstructure rods were added, there was initially an upward spike in curve
(a), followed by a reduction to a low plateau. Curve (b) represents the R-factor calculated
with data from just the superstructure rods. This also shows a rapid reduction from a starting
point at the 800th iteration when the superstructure data are first included in the phasing
algorithm. Note that the ordinate of curve (a) is much lower than that of curve (b) (the former
is multiplied by a factor of 500). This is because the denominator in (30) is much larger in
the case of the CTRs which are dominated by the large diffraction contributions from the bulk
structure.
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Figure 8. (a) Perspective view of green electron density isosurfaces of the starting distribution{
u
(0)
j

}
(the difference Fourier estimate) of the outer two double layers of a GaAs(111)-(2 × 2)

surface unit cell. The red dots represent positions of Ga atoms in the vacancy-buckling model, while
the light green dots denote the corresponding positions of the As atoms. Note that the isosurfaces
seem to indicate the positions of atoms of an ideal bulk-terminated surface (with no relaxation
or reconstruction) with the outer double layers remaining distinct. The blue x–y planes indicate
the approximate level of each of the two outermost double layers of the surface. The shading
within each of these planes represents the variation of the electron density within that plane. (b)
Same as (a) except that the green electron density isosurfaces are those after the modification of
the density distribution of (a) by the inclusion of just the (integer-order) CTRs and the execution
of 800 iterations of the error reduction algorithm. The isosurface lobes in the upper double layer
indicate the relaxation of this layer to produce almost coplanar As and Ga atoms. Note, however,
that the isosurfaces indicate an incorrect (1 × 1) periodicity parallel to the surface. (c) Same as (a)
except that the green electron density isosurfaces now represent the electron distribution recovered
after the inclusion of both the CTRs and the (odd-order) superstructure rods in the error-reduction
algorithm. The true (2 × 2) periodicity of the outermost double layer is now recovered with no
high electron density in the vicinity of the vacancy at the z-axis in the outermost double layer. Note
that the isosurfaces now surround just the model atom positions in this complicated reconstructed
surface.

9. Conclusions

The central problem of x-ray crystallography is the phase problem: namely the fact that
although the amplitudes of crystal structure factors are experimentally measurable, their
phases are not. Knowledge of both would enable the recovery of the electron density within
a unit cell of the structure. The aim of so-called direct methods of crystallography is the
estimation of the phases of the structure factors from a knowledge of their amplitudes.
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Figure 8. (Continued )
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Figure 9. Variation as a function of iteration number
of the error-reduction algorithm of the average phase
difference between the current estimates and true phases
from the model structure of GaAs(111)-(2 × 2): curve
(a) represents the average phase difference &φCTR of
the crystal truncation rods and curve (b) represents
the corresponding quantity &φS of the superstructure
rods. Curve (b) begins at the 800th iteration, when the
superstructure data are first used by the algorithm.

Figure 10. Variation as a function of iteration
number of the error-reduction algorithm of the x-
ray R-factor quantifying the agreement between the
estimates of the structure factors of the entire
structure from the current estimate of the surface
electron distribution and that from the model structure
of GaAs(111)-(2 × 2): curve (a) represents the R-
factor (×500) of just the crystal truncation rods and
curve (b) represents the corresponding quantity of the
superstructure rods. Curve (b) begins at the 800th
iteration, when the superstructure data are first used by
the algorithm.

In problems of this kind, knowledge that the Fourier transforms of these complex
amplitudes may be the quantities that are both real and of known sign is a powerful restriction
on possible phase distributions. Indeed, iterative methods have been developed in optics and
astronomy for recovering the phases associated with the measured amplitudes, and hence
the structure of the physical object represented by the corresponding Fourier transform. In
general, such methods require both an oversampling of the object’s Fourier transform, that is
a sampling at a frequency greater than the Nyquist frequency, and a loose knowledge of the
boundaries of the object (or its support in mathematical parlance).

We show in this paper that an adaptation of such methods may be applied to the problem
of surface x-ray diffraction (SXRD), namely to recover the surface electron density. Since the
measurable scattered amplitudes have contributions from a known bulk structure in addition
to an unknown surface, there are analogies with the structure completion problem of protein
crystallography. The latter problem arises when an attempt is made to recover the structure of
an unknown part of a protein from a knowledge of part of the structure.

We have shown that this structure completion problem of surface crystallography may
be solved by an application of iterative methods for phasing a set of given (or measured)
structure factors by successive constraining operations in real and reciprocal space. We have
given numerical examples of the recovery of the electron distribution from simulated x-ray
diffraction data from two distinct types of surfaces: (1) one whose periodicity parallel to the
surface (the lateral periodicity) is the same as that of the bulk structure, and where all the
SXRD data consist of the so-called crystal truncation rods in reciprocal space, which have
mutually coherent additions of scattering contributions from the bulk and the surface; and (2)
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a reconstructed surface where the real-space unit cell of the surface is larger than that of the
bulk. Consequently, in the latter case, the SXRD data consist of both crystal truncation rods
and the so-called superstructure rods, the latter arising solely from scattering by the surface
electrons.

We have also shown that the exponential modelling scheme that we had previously
developed for the structure completion problem in both protein and surface crystallography
may be recast as an input–output phasing algorithm with a particular form of object-domain
operations.
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